Overview

最近几天,Chris和我看了很多论文,对PSSM有了更深的认识。但是,鉴于PSSM本身包含单个位置的信息更明显,而几乎没有包含蛋白质序列片段信息,我们两人思考如何将蛋白质序列片段信息编码,终于找到了一种PSSM的处理方式,这种方式叫做smoothed window,特此记录一下。
该算法原理,请参考这篇论文:Predicting RNA-binding sites of proteins using support vector machines and evolutionary information,并在此感谢该论文作者!并感谢Chris对我的鼓励和帮助!

1 python编码

1.1 t34pssm.py

这部分代码是主函数,是之前这篇文章中的代码,可以参考这里蛋白质序列特征提取方法之——PSSM,就不详加解释了。

    #! /usr/bin/env python
    # -*- coding: utf-8 -*-
    # vim:fenc=utf-8
    """
        python t34pssm.py total_train_60.fasta ./total_train_60 ./total_train_60_pssm  w_smth n 
        param:
            1. 总的fasta格式蛋白质序列
            2. 分开的fasta格式蛋白质序列的文件夹 
            3. 分开的fasta格式蛋白质序列对应的pssm的文件夹  
            4.smooth-window 值,要求是奇数。
            5.截取的序列长度,一般为25,30,50。本例为30.
    """
    import fileinput
    import sys
    from os import listdir
    from os.path import isfile, join
    import re
    from pssm_smoothed import *
    
    smplfasta = sys.argv[1]  
    spfasta = sys.argv[2]   
    check_head = re.compile(r'\>')  
    
    #read from undersample fasta, store 
    smplist = []
    smpcnt = 0
    for line, strin in enumerate(fileinput.input(smplfasta)):
        if check_head.match(strin):
            smplist.append(strin.strip())
            smpcnt += 1
    onlyfiles = [ f for f in listdir(spfasta) if isfile(join(spfasta,f)) ]

    fastaDict = {}

    for fi in onlyfiles:
        cntnt = ''
        for line, strin in enumerate(fileinput.input(spfasta+'/'+fi)):
            if line == 0:
                cntnt += strin.strip()
        if cntnt in fastaDict:
            print strin
        fastaDict[cntnt] = fi

    pssmdir = sys.argv[3]

    w_smth = sys.argv[4]
    #如果窗口值不是奇数,退出程序
    if int(w_smth)%2 ==0:
        print 'Please change your input argument ' + w_smth + ' to an odd smoothing-window number!!!'
        sys.exit(1)
    n=sys.argv[5]

    for smp in smplist:
        finalist.append(pssmdir+'/'+fastaDict[smp].split('.')[0]+'.pssm')

    for fi in finalist: 
        pssm_single(fi,'total_train_60_pssm_smth',w_smth,n)

1.2 pssm_smoothed.py

    #! /usr/bin/env python
    # -*- coding: utf-8 -*-
    # vim:fenc=utf-8
    """
    Retrieve smoothed PSSM features 
    """
    import sys
    import numpy as np
    import math
    import re
    import fileinput 
    def pssm_single(fi,output_smth,w_smth,n):
        # 0-19 represents amino acid 'ARNDCQEGHILKMFPSTWYV'
        w_smth=int(w_smth)
        n=int(n)
        Amino_vec = "ARNDCQEGHILKMFPSTWYV"

        PSSM = []
        PSSM_orig = []  
        seq_cn = 0 
        # 读取pssm文件
        for line, strin in enumerate(fileinput.input(fi)):
            if line > 2:
            str_vec = strin.split()[1:22]
            if len(str_vec) == 0:
                break
            PSSM.append(map(int, str_vec[1:]))
            seq_cn += 1
        print seq_cn            
        fileinput.close()
        PSSM_smth = np.array([[0.0]*20]*seq_cn)
        #print PSSM_smth
        PSSM_orig=np.array(PSSM)
        #print PSSM_orig
        #section for PSSM_smth features
        PSSM_smth_full=pssm_smth(PSSM_orig,PSSM_smth,w_smth,seq_cn)
        PSSM_smth_final=[[0.0]*20]*n

        #截取PSSM_smth_full矩阵的前n行,作为输出内容
        for i in range(n):
            PSSM_smth_final[i]=PSSM_smth_full[i]
            #print PSSM_smth_final[i]
        PSSM_smth_final_shp=np.shape(PSSM_smth_final)
        # for i in range(seq_cn):
        #   print PSSM_smth_final[i]
        file_out_smth=file(output_smth,'a')
        np.savetxt(file_out_smth, [np.reshape(PSSM_smth_final, (PSSM_smth_final_shp[0] * PSSM_smth_final_shp[1], ))], delimiter=",")

    #这个函数会求出整条序列的smoothed pssm矩阵
    def pssm_smth(PSSM_orig,PSSM_smth,w_smth,l):
        for i in range(l):
            #smooth窗口超过pssm上边界
            if i <(w_smth-1)/2:
                for j in range(i+(w_smth-1)/2+1):
                    #print i,j              
                    PSSM_smth[i]+=PSSM_orig[j]
                    #print PSSM_smth[i]
            #smooth窗口超过pssm下边界
            elif i>=(l-(w_smth-1)/2):
                for j in range(i-(w_smth-1)/2,l):   
                    #print i,j          
                    PSSM_smth[i]+=PSSM_orig[j]
                    #print PSSM_smth[i]
            else:
                for j in range(i-(w_smth-1)/2,i+(w_smth-1)/2+1):
                    #print i,j
                    PSSM_smth[i]+=PSSM_orig[j]
                    #print PSSM_smth[i]     
        return PSSM_smth

1.3 总结

该算法以行为单位进行运算。以本行为中心,上下扩展,扩展的上下长度为smooth窗口值,将这些行的值加起来,存入新的矩阵的相同行位置。这样新的矩阵就包含了多个连续氨基酸序列片段的信息,会为特征提取提供新的思路。