Overview
最近几天,Chris
和我看了很多论文,对PSSM
有了更深的认识。但是,鉴于PSSM
本身包含单个位置的信息更明显,而几乎没有包含蛋白质序列片段信息,我们两人思考如何将蛋白质序列片段信息编码,终于找到了一种PSSM
的处理方式,这种方式叫做smoothed window
,特此记录一下。
该算法原理,请参考这篇论文:Predicting RNA-binding sites of proteins using support vector machines and evolutionary information,并在此感谢该论文作者!并感谢Chris
对我的鼓励和帮助!
1 python编码
1.1 t34pssm.py
这部分代码是主函数,是之前这篇文章中的代码,可以参考这里蛋白质序列特征提取方法之——PSSM,就不详加解释了。
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# vim:fenc=utf-8
"""
python t34pssm.py total_train_60.fasta ./total_train_60 ./total_train_60_pssm w_smth n
param:
1. 总的fasta格式蛋白质序列
2. 分开的fasta格式蛋白质序列的文件夹
3. 分开的fasta格式蛋白质序列对应的pssm的文件夹
4.smooth-window 值,要求是奇数。
5.截取的序列长度,一般为25,30,50。本例为30.
"""
import fileinput
import sys
from os import listdir
from os.path import isfile, join
import re
from pssm_smoothed import *
smplfasta = sys.argv[1]
spfasta = sys.argv[2]
check_head = re.compile(r'\>')
#read from undersample fasta, store
smplist = []
smpcnt = 0
for line, strin in enumerate(fileinput.input(smplfasta)):
if check_head.match(strin):
smplist.append(strin.strip())
smpcnt += 1
onlyfiles = [ f for f in listdir(spfasta) if isfile(join(spfasta,f)) ]
fastaDict = {}
for fi in onlyfiles:
cntnt = ''
for line, strin in enumerate(fileinput.input(spfasta+'/'+fi)):
if line == 0:
cntnt += strin.strip()
if cntnt in fastaDict:
print strin
fastaDict[cntnt] = fi
pssmdir = sys.argv[3]
w_smth = sys.argv[4]
#如果窗口值不是奇数,退出程序
if int(w_smth)%2 ==0:
print 'Please change your input argument ' + w_smth + ' to an odd smoothing-window number!!!'
sys.exit(1)
n=sys.argv[5]
for smp in smplist:
finalist.append(pssmdir+'/'+fastaDict[smp].split('.')[0]+'.pssm')
for fi in finalist:
pssm_single(fi,'total_train_60_pssm_smth',w_smth,n)
1.2 pssm_smoothed.py
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# vim:fenc=utf-8
"""
Retrieve smoothed PSSM features
"""
import sys
import numpy as np
import math
import re
import fileinput
def pssm_single(fi,output_smth,w_smth,n):
# 0-19 represents amino acid 'ARNDCQEGHILKMFPSTWYV'
w_smth=int(w_smth)
n=int(n)
Amino_vec = "ARNDCQEGHILKMFPSTWYV"
PSSM = []
PSSM_orig = []
seq_cn = 0
# 读取pssm文件
for line, strin in enumerate(fileinput.input(fi)):
if line > 2:
str_vec = strin.split()[1:22]
if len(str_vec) == 0:
break
PSSM.append(map(int, str_vec[1:]))
seq_cn += 1
print seq_cn
fileinput.close()
PSSM_smth = np.array([[0.0]*20]*seq_cn)
#print PSSM_smth
PSSM_orig=np.array(PSSM)
#print PSSM_orig
#section for PSSM_smth features
PSSM_smth_full=pssm_smth(PSSM_orig,PSSM_smth,w_smth,seq_cn)
PSSM_smth_final=[[0.0]*20]*n
#截取PSSM_smth_full矩阵的前n行,作为输出内容
for i in range(n):
PSSM_smth_final[i]=PSSM_smth_full[i]
#print PSSM_smth_final[i]
PSSM_smth_final_shp=np.shape(PSSM_smth_final)
# for i in range(seq_cn):
# print PSSM_smth_final[i]
file_out_smth=file(output_smth,'a')
np.savetxt(file_out_smth, [np.reshape(PSSM_smth_final, (PSSM_smth_final_shp[0] * PSSM_smth_final_shp[1], ))], delimiter=",")
#这个函数会求出整条序列的smoothed pssm矩阵
def pssm_smth(PSSM_orig,PSSM_smth,w_smth,l):
for i in range(l):
#smooth窗口超过pssm上边界
if i <(w_smth-1)/2:
for j in range(i+(w_smth-1)/2+1):
#print i,j
PSSM_smth[i]+=PSSM_orig[j]
#print PSSM_smth[i]
#smooth窗口超过pssm下边界
elif i>=(l-(w_smth-1)/2):
for j in range(i-(w_smth-1)/2,l):
#print i,j
PSSM_smth[i]+=PSSM_orig[j]
#print PSSM_smth[i]
else:
for j in range(i-(w_smth-1)/2,i+(w_smth-1)/2+1):
#print i,j
PSSM_smth[i]+=PSSM_orig[j]
#print PSSM_smth[i]
return PSSM_smth
1.3 总结
该算法以行为单位进行运算。以本行为中心,上下扩展,扩展的上下长度为smooth
窗口值,将这些行的值加起来,存入新的矩阵的相同行位置。这样新的矩阵就包含了多个连续氨基酸序列片段的信息,会为特征提取提供新的思路。